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Abstract 

This paper outlines the use of inverse analysis in strain distribution recovery. To carry it out we used a sensor 
with  FBG (fibre Bragg grating) and the inverse problem solution was discussed. The study and validation of  a 
mathematical model with the fibre Bragg grating is also outlined in this paper. Computer simulations were 
carried out using numerical algorithms which performed calculations according to the mathematical structure of 
the model and respected all remaining values of the FBG sensor elements.  Experimental measurements were 
also conducted using a built measurement system. 
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1. Introduction 
 

Sensors based on fibre Bragg gratings have been used in metrology and measurement 
systems for years. They have a number of advantages such as: electromagnetic interference 
insensitivity, small mass and size, great sensitivity, a broad measurement band, and ease of 
transmission of light [1]. Thanks to their multiplexing capacity, measurements in many points 
and their application in WDM (Wavelength Division Multiplexing) and smart WDM systems 
are possible [2]. In many papers published recently, strain distribution in the grating using the 
finite element method, as well as the nonlinear deformations influence on the grating spectra 
were analyzed [3, 4]. Paper [5] provides an overview of the application of FBG sensors in 
strain measurement, particularly in the field of structural sensing. 

In many papers, for instance [6], the embedding methodology in thin woven composites 
(thickness of 400 µm) was outlined. In the same paper, weave composite plates were used for 
sensor patch manufacturing. Two different configurations were considered and compared: 
carbon fibre/epoxy glue and glass fibre/epoxy glue plates. Unfortunately the results of this 
study could only be related to a specific specimen, while in this paper we propose many 
different specimen shapes to analyze the material behavior and strain distribution recovery. 

In most studies the grating is embedded by the epoxy glue [7]. FBG sensors have been also 
embedded in a variety of advanced composite materials [8]. This requires an examination of 
the FBG spectra before and after the fabrication process.  

In our study the grating was surface-bonded to many different specimens using an 
adhesive. Moreover we used the sikadur-30 glue whose Young modulus is 13 GPa, while a 
typical bonding layer Young modulus is 3-3,5 GPa [9]. Such a high Young modulus of this 
glue increases the strain transmission rate to the FBG element.  

In many studies the shape of strain distribution is similar (only the strain amplitude 
changes) [6]. We designed and constructed a special instrument and special specimens (each 
specimen of a different shape) to generate unique strain distribution shapes in fibre Bragg 
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gratings. The uniqueness and variety of shapes allowed us to characterize the accuracy of the 
strain distribution recovery depending on the distribution shape. There was a relationship 
between the shape and the recovery accuracy of strain distribution. 

 
2. Method  
 

In this article the use of an inverse problem [10] for the strain distribution recovery with 
the use of the fibre Bragg grating was outlined. The problem of strain profile recovery on the 
basis of the grating spectrum is the so-called inverse problem. There are no analytical 
methods for the recovery of the grating strain distribution on the basis of its spectrum. Due to 
this situation, the following procedure was used (Fig. 1). First, the initial values of the strain 
distribution were assumed. These values were then used as input data to build a grating 
model. This model allowed us to calculate the optical spectrum and then this spectrum was 
compared with the measured grating spectrum. Next, the convergence criterion between these 
two spectra was checked. If convergence occurred, the optimal strain distribution was 
obtained. If no convergence occurred, the objective function (which was calculated on the 
basis of equation (1) was minimized and strain values were selected according to the 
simulated annealing (SA) algorithm: 
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where FC is the objective function, Tm denotes the measured transmission spectrum of the 
grating and Tc denotes the calculated transmission spectrum (using the simulated annealing 
algorithm). 
 
2.1. Measurement methodology 
 

Fig. 1 shows the procedure of the strain distribution recovery on the basis of the measured 
Bragg grating spectrum. 

 
 

Fig. 1. The strain distribution recovery procedure. 
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The following were the three most important elements of the procedure depicted in Fig. 1: 
fibre Bragg grating model, the objective function and its minimization algorithms. A general 
classification of inverse methods with examples of techniques belonging to particular groups 
was presented in article [11], whose authors studied inverse problems in indirect 
measurements, focusing on inverse problems formulated in terms of Fredholm integral 
equations of the first kind. 
 
2.2. FBG sensor model 
 

Coupled-mode equations [12] were used in the simulation of the spectral response of the 
Bragg grating. 

The white light is the sensor model input (the light entering the grating). The input can be 
expressed as R(−L/2). The output of the model is the light transmitted through the grating 
(grating’s transmission spectrum), which can be expressed as R(+L/2). The model parameters 
are as follows: the grating length L, the “DC” self-coupling coefficient σ, and the coupling 
coefficient k. 

There is no input signal that is incident from the right-hand side of the grating, i.e. 
S(+L/2)=0, but there is a known signal value that is incident from the left side of the grating, 
i.e. R(−L/2)=1. 
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Fig. 2. The initial condition and calculation of the grating response to input field. 
 
 
The grating is represented by the transfer matrix MF . The light propagation process can be 
described by: 
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S(−L/2) is the signal reflected from the grating and the MF  matrix can be expressed as 
follows: 
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The individual elements of the MF  matrix can be described as follows. 

The general “DC” self-coupling coefficient σ can be represented by [12]: 
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where 
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1
 describes a possible chirp of the grating period, and φ is the grating phase. The 

detuning parameter δ can be represented by: 
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where Λ= effD n2λ  is the design wavelength for Bragg reflectance. For very weak gratings 

where ( 0→effnδ ) we obtain: 
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where effnδ is the background refractive index change. 

The coupling coefficient ( )zk  can be represented by: 
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where g(z) is the function of apodization, and v is the fringe visibility. The coupling 
coefficient ( )zk  is proportional to the modulation depth of the refractive index:  
 

( ) ( ) ( ).n z n z g zδ∆ =  
 

In our case the grating was apodized and the apodization profile was given by the grating 
producer (Welltech Instrument). The simulated grating apodization function was as follows: 
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where a is the Gauss function width parameter and in our case 80=a .  

Bγ  can be expressed by the following equations: 
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2.3. Selection and description of the algorithm applied 

In the first part of the study we generated a hypothetical strain distribution curve and then 
we checked how individual algorithms were recovering this specific curve. We used the 
following algorithms for the objective function minimization: the Newton algorithm, the 
Gauss-Newton algorithm, the conjugate gradient algorithm, the Levenberg-Marquardt 
algorithm, the genetic and simulated annealing algorithm. We found that for the Bragg grating 
definitely the best results were obtained when the simulated annealing algorithm was applied. 
Our criterion for the algorithm choice was the relative root mean squared error value of the 
strain distribution. Because of the lowest value of this error, the simulated annealing 
algorithm was chosen and other algorithms were rejected.  

Due to the concise nature of this article we concentrate specifically on the cooling scheme 
of the simulated annealing algorithm. In our case the Otten cooling scheme gave the best 
results. 

The decrement rule obtained by Otten et al. was proposed as follows [13]: 

                                              ,                                                    (11)
where:  Tk+1 is the temperature in the next iteration (next step), and Mk is given by: 

                                                 ,                                            (12) 
where δ is a small real number, and  Cmax is an estimation of the maximum value of the 
objective function. 

2.4. Experiments 

Strain distribution of a specimen can be recovered on the basis of the distribution of the 
linear relative size change in the measured area. The research already carried out led to the 
use of information from the measured and modelled spectrum which was processed onto the 
real strain – the so-called inverse problem. The instrument which enables steel specimens 
stretching was designed and constructed for laboratory measurements. Fibre Bragg gratings 
were glued on specimens. Specimen elongations moving to the grating cause its period 
changes which changes the grating spectrum that could be recovered with the use of a photo 
spectrometer. The grating spectra carry information about the strain distribution even when it 
is repeatedly diverse on the measured length. 

In order to obtain supposed strain distributions in the measured area different specimen 
shapes were used. Since we knew the specimen’s cross-section and load, we calculated the 
strain in many points along the specimen and the Bragg grating. We used the finite element 
method − FEM [14] for our calculations. Fig. 3 shows specimens with the FEM mesh (real 
dimensions). As can be seen the mesh is condensed in the narrowing places. 
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Fig. 3. The mesh of finite physical elements averaging the specimens’ physical state. 
 
The 3-D analysis provided complete information about the strain values of a specimen, 

glue and the grating. Calculation results for the three dimensions are shown in the following 
figures. The FEM mesh is three-dimensional (Fig. 4). As can be seen, the whole specimen-
glue-FBG system is covered by the finite element method. The size of the FEM mesh in the 
glue and the Bragg grating in the fibre is smaller than the FEM mesh size in the specimen. 

 

 
 

Fig. 4. 3D FEM mesh. 
 

The FEM analysis allowed a theoretical calculation of the Bragg grating strain values [15] 
for every shape of the measured specimens. The theoretical strain distribution (which was 
calculated with the use of the FEM) was depicted in shared characteristics in a further part of 
this article. This strain distribution was presented together with the distribution determined by 
the solution of the inverse problem. 

The research was conducted on a constructed laboratory system, which is shown in Fig. 5. 
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Fig. 5. The diagram of a laboratory system for the strain distribution recovery with the use  

of the Bragg gratings. 
 

 The light of the wavelength in the range of 400-1700 nm (the white light source 
YOKOGAWA AQ-4305) was directed to an optical fibre with the FBG. The grating was 
glued to the specimen and the specimen was stretched by the force F using the laboratory 
system for strain generation. The light (its modified spectrum) passed through the lengthened 
grating and was then directed to an optical spectrum analyzer (ANDO AQ-6315B). At the 
same time, strain distribution was generated at random with the use of the simulated 
annealing algorithm. This accidental distribution was then introduced to the model of the 
Bragg grating. On the basis of the model and the accidental strain distribution, the 
transmission spectrum of the grating was calculated. The real (from the spectrum analyzer) 
and model spectra were then compared and the objective function value was calculated. If the 
spectral characteristics were not compatible, new values of the strain distribution were 
selected (according to the simulated annealing algorithm). The whole process was repeated 
until we obtained the predetermined accuracy and a specific (suitably small) value of the 
objective function. The distribution leading to the objective function minimization was the 
correct distribution and it was the best match to the real one. The next step was the 
distribution compatibility checking process. The distribution recovered (with the use of the 
algorithm) was compared with the theoretical distribution resulting from the force F and the 
known shape of the specimen.  

The measure of the theoretical and recovered characteristic conformity is the relative root 
mean squared error value δ: 
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where: MES
iε  is the theoretical strain value and lga

iε  is the recovered strain value which is 

calculated with the use of the simulated annealing algorithm, N is the number of points in 
which the strain values are calculated. In this case N=10. 
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3. Direct measurements and calculation results 
 

Figs 6-9 show shapes of specimens used and Figs 10-13 present strain distributions of 
these specimens for the theoretical case (calculated on the basis of the load, specimens’ 
geometry and specimen material) and the simulated case (recovered from indirect 
measurements in the laboratory system). 
 
 

                   c 

 
Fig. 6. The system measured: 1 – optical fibre with the FBG, 2 – glue, 3 – specimen number 1. 

 
 
 

                     123  

 
Fig. 7. The system measured: 1 – optical fibre with the FBG, 2 – glue, 3 – specimen number 2. 

 
 
 

        

 
Fig. 8. The system measured: 1 – optical fibre with the FBG, 2 – glue, 3 – specimen number 3. 
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Fig. 9. The system measured: 1 – optical fibre with the FBG, 2 – glue, 3 – specimen number 4. 

 
 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 3 

4 

5 

x 10 -4 

grating length, cm  

str
ain 

  

  

strain distribution from FEM 
strain distribution from inverse problem solution 
initial strain distribution 

 
 

Fig. 10. Strain distributions in the grating: from FEM (green line), initial (red line) and recovered with the use of 
the simulated annealing algorithm (blue line) for the specimen number 1. 
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Fig. 11. Strain distributions in the grating: from FEM (green line), initial (red line) and recovered with the use of 
the simulated annealing algorithm (blue line) for the specimen number 2. 

 
 

Results presented in Fig. 10 indicate that the proposed method using the simulated 
annealing algorithm showed convergence of the resolution, regardless of established initial 
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values. In the case of the specimen shape presented in Fig. 6 (specimen number 1) the relative 
root mean squared error calculated according to equation (13) was δ=0,094. The δ error value 
for specimen number 2 was 10 times smaller than the error value for the specimen number 1. 
The error value depends also on strain values. The next step was measurements of the 
specimen number 3, the shape of which was shown in Fig. 8. As in previous specimens the 
grating was glued onto the specimen in the narrowing place. Fig 8 shows the method of 
location of the Bragg grating on the specimen. 
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Fig. 12. Strain distributions in the grating: from FEM (green line), initial (red line) and recovered with the use of 
the simulated annealing algorithm (blue line) for the specimen number 3. 
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Fig. 13. Strain distributions in the grating: from FEM (green line), initial (red line) recovered with the use of the 
simulated annealing algorithm (blue line) for the specimen number 4. 

 
 

Results of the adaptation of the model presented in this article to experimental data for a 
concrete strain profile were outlined in an article [16]. In that study the grating spectra from 
the measurements and from the grating model were shown in one graph. 
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Measurements and calculations results are presented in Fig. 12. As in previous measure-
ments – also in the case of specimen number 3 – the strain distribution was determined 
according to the proposed method. In this case  error δ  was 0.046.  

Specimen number 4 was the last we measured. The shape of this specimen was shown in 
Fig. 9. Also in this case the Bragg grating was glued in the narrowing place on the specimen. 
Measurements and calculations results for specimen number 4 are put together in Fig. 13. For 
specimen number 4 the distinct convergence between the recovered and real strain 
distribution could be seen – as in specimens 1, 2 and 3. The error of the strain distribution 
determination which was calculated according to equation (13) was δ=0.191. As can be seen 
(on the basis of characteristics in Figs 10-13) there is a relationship between the error δ and 
the shape and character of the strain distribution. The error value for specimens 1 to 3 did not 
exceed 0.05. The error achieved the value of 0.191 only for specimen number 4 which was 
caused by the shape of the real strain distribution. The strain distribution shape for specimen 
number 4 is the most diverse and this results in the highest δ error. 

Table 1 shows the calculated relative accuracies of the strain distribution. 
 

Table 1. Relative root mean squared error values for individual specimens. 

specimen number 1 2 3 4 
relative root mean 

squared error δδδδ 
0,094 0,009 0,046 0,191 

 
The differences in strain distributions from FEM and SA also depend on the FEM because 

in this method the continuous space is divided into finite elements. 
 
4. Summary 
 

The results of laboratory measurements and numerical simulations presented here indicate 
that it is possible to apply the inverse analysis to determine the strain distribution with the use 
of  fibre Bragg grating sensors. 

The forward problem could be realized by the development and validation of the 
mathematical model of the Bragg grating sensor. 

It is possible to conduct computer simulations with the use of numerical algorithms which 
realize calculations according to the mathematical structure of the Bragg grating model and 
which respect values of all model parameters. 

The simulated annealing algorithm we used shows very small result sensitivity to the 
established initial point. 

The application of regularization seems to be a desired next step in parameter estimations 
of the Bragg grating model. 
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